

Essential Algorithms

Essential Algorithms

A Practical Approach to Computer
Algorithms Using Python® and C#

Rod Stephens

Essential Algorithms: A Practical Approach to Computer Algorithms Using Python® and C#

Published by
John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2019 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978‐1‐119‐57599‐3
ISBN: 978‐1‐119‐57596‐2 (ebk)
ISBN: 978‐1‐119‐57598‐6 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per‐copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750‐8400, fax (978) 646‐8600. Requests to the Publisher for permission should be addressed to the Per-
missions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748‐6011, fax (201) 748‐6008,
or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work
is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional
services. If professional assistance is required, the services of a competent professional person should be sought. Nei-
ther the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site
is referred to in this work as a citation and/or a potential source of further information does not mean that the author
or the publisher endorses the information the organization or website may provide or recommendations it may make.
Further, readers should be aware that Internet websites listed in this work may have changed or disappeared between
when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762‐2974, outside the United States at (317) 572‐3993 or fax (317) 572‐4002.

Wiley publishes in a variety of print and electronic formats and by print‐on‐demand. Some material included with
standard print versions of this book may not be included in e‐books or in print‐on‐demand. If this book refers to media
such as a CD or DVD that is not included in the version you purchased, you may download this material at http://
booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2019933736

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its
affiliates, in the United States and other countries, and may not be used without written permission. Python is a regis-
tered trademark of Python Software Foundation. All other trademarks are the property of their respective owners. John
Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.

 For Maki

vii

About the Author

Rod Stephens started out as a mathematician, but while studying at MIT, he
discovered how much fun algorithms are. He took every algorithms course MIT
offered, and he has been writing complex algorithms ever since.

During his career, Rod has worked on an eclectic assortment of applica-
tions in felds such as telephone switching, billing, repair dispatching, tax
processing, wastewater treatment, concert ticket sales, cartography, and training
for professional football players.

Rod was a Microsoft Visual Basic Most Valuable Professional (MVP) for 15
years and has taught introductory programming courses. He has written more
than 30 books that have been translated into languages from all over the world.
He has also written more than 250 magazine articles covering C#, Visual Basic,
Visual Basic for Applications, Delphi, and Java.

Rod’s popular C# Helper website (http://www.csharphelper.com) receives
millions of hits per year and contains tips, tricks, and example programs for
C# programmers. His VB Helper website (http://www.vb-helper.com) contains
similar material for Visual Basic programmers.

You can contact Rod at: RodStephens@csharphelper.com.

ix

About the Technical Editor

John Mueller is a freelance author and technical editor. He has writing in his
blood, having produced 112 books and more than 600 articles to date. The topics
range from networking to artificial intelligence and from database management
to heads-down programming. Some of his current books include discussions
of data science, machine learning, and algorithms. His technical editing skills
have helped more than 70 authors refine the content of their manuscripts. John
has provided technical editing services to numerous magazines, performed
various types of consulting, and he writes certification exams as well.

Be sure to read John’s blog at: http://blog.johnmuellerbooks.com/. You can
reach John on the Internet at John@JohnMuellerBooks.com. John also has a web-
site at http://www.johnmuellerbooks.com/. Be sure to follow John on Amazon
at https://www.amazon.com/John-Mueller/.

xi

Credits

Senior Acquisitions Editor
Kenyon Brown

Editorial Manager
Pete Gaughan

Associate Publisher
Jim Minatel

Production Manager
Kathleen Wisor

Project Editor
Gary Schwartz

Production Editor
Athiyappan Lalith Kumar

Technical Editor
John Muller

Copy Editor
Kim Wimpsett

Proofreader
Nancy Bell

Indexer
Potomac Indexing, LLC

Cover Designer
Wiley

xiii

Acknowledgments

Thanks to Ken Brown, Devon Lewis, Gary Schwartz, Pete Gaughan, Jim Mina-
tel, Athiyappan Lalitkumar, and everyone else at Wiley that helped make this
book possible.

Thanks to longtime friend John Mueller, who provided his technical exper-
tise to help make the information in this book as accurate as possible. (Any
remaining mistakes are mine, not his.)

Thanks also to Sunil Kumar for his generous feedback on the frst edition.

xv

Contents at a glance

Introduction� xxix

Chapter 1	 Algorithm Basics� 1

Chapter 2	 Numerical Algorithms� 23

Chapter 3	 Linked Lists� 71

Chapter 4	 Arrays� 103

Chapter 5	 Stacks and Queues� 135

Chapter 6	 Sorting� 167

Chapter 7	 Searching� 201

Chapter 8	 Hash Tables� 209

Chapter 9	 Recursion� 227

Chapter 10	 Trees� 285

Chapter 11	 Balanced Trees� 349

Chapter 12	 Decision Trees� 367

Chapter 13	 Basic Network Algorithms� 403

Chapter 14	 More Network Algorithms� 451

Chapter 15	 String Algorithms� 493

Chapter 16	 Cryptography� 519

Chapter 17	 Complexity Theory� 543

xvi	 Contents at a glance

Chapter 18	 Distributed Algorithms� 561

Chapter 19	 Interview Puzzles� 595

Appendix A	 Summary of Algorithmic Concepts� 607

Appendix B	 Solutions to Exercises� 623

Glossary� 711

Index� 739

xvii

Contents

Introduction� xxix

Chapter 1	 Algorithm Basics� 1
Approach� 2
Algorithms and Data Structures� 2
Pseudocode� 3
Algorithm Features� 6

Big O Notation� 7
Rule 1� 8
Rule 2� 8
Rule 3� 9
Rule 4� 9
Rule 5� 10

Common Run Time Functions� 11
1� 11
Log N� 11
Sqrt N� 14
N� 14
N log N� 15
N2� 15
2N� 15
N!� 16

Visualizing Functions� 16
Practical Considerations� 18
Summary� 19
Exercises� 20

xviii	 Contents

Chapter 2	 Numerical Algorithms� 23
Randomizing Data� 23

Generating Random Values� 23
Generating Values� 24
Ensuring Fairness� 26
Getting Fairness from Biased Sources� 28

Randomizing Arrays� 29
Generating Nonuniform Distributions� 30
Making Random Walks� 31

Making Self-Avoiding Walks� 33
Making Complete Self-Avoiding Walks� 34

Finding Greatest Common Divisors� 36
Calculating Greatest Common Divisors� 36
Extending Greatest Common Divisors� 38

Performing Exponentiation� 40
Working with Prime Numbers� 42

Finding Prime Factors� 42
Finding Primes� 44
Testing for Primality� 45

Performing Numerical Integration� 47
The Rectangle Rule� 48
The Trapezoid Rule� 49
Adaptive Quadrature� 50
Monte Carlo Integration� 54

Finding Zeros� 55
Gaussian Elimination� 57

Forward Elimination� 58
Back Substitution� 60
The Algorithm� 61

Least Squares Fits� 62
Linear Least Squares� 62
Polynomial Least Squares� 64

Summary� 67
Exercises� 68

Chapter 3	 Linked Lists� 71
Basic Concepts� 71
Singly Linked Lists� 72

Iterating Over the List� 73
Finding Cells� 73
Using Sentinels� 74
Adding Cells at the Beginning� 75
Adding Cells at the End� 76
Inserting Cells After Other Cells� 77
Deleting Cells� 78

Doubly Linked Lists� 79
Sorted Linked Lists� 81

	 Contents	 xix

Self-Organizing Linked Lists� 82
Move To Front (MTF)� 83
Swap� 83
Count� 84
Hybrid Methods� 84
Pseudocode� 85

Linked-List Algorithms� 86
Copying Lists� 86
Sorting with Insertionsort� 87
Sorting with Selectionsort� 88

Multithreaded Linked Lists� 90
Linked Lists with Loops� 91

Marking Cells� 92
Using Hash Tables� 93
List Retracing� 94
List Reversal� 95
Tortoise and Hare� 98
Loops in Doubly Linked Lists� 100

Summary� 100
Exercises� 101

Chapter 4	 Arrays� 103
Basic Concepts� 103
One-Dimensional Arrays� 106

Finding Items� 106
Finding Minimum, Maximum, and Average� 107
Finding Median� 108
Finding Mode� 109
Inserting Items� 112
Removing Items� 113

Nonzero Lower Bounds� 114
Two Dimensions� 114
Higher Dimensions� 115

Triangular Arrays� 118
Sparse Arrays� 121

Find a Row or Column� 123
Get a Value� 124
Set a Value� 125
Delete a Value� 127

Matrices� 129
Summary� 131
Exercises� 132

Chapter 5	 Stacks and Queues� 135
Stacks� 135

Linked-List Stacks� 136
Array Stacks� 138
Double Stacks� 139
Stack Algorithms� 141

xx	 Contents

Reversing an Array� 141
Train Sorting� 142
Tower of Hanoi� 143
Stack Insertionsort� 145
Stack Selectionsort� 146

Queues� 147
Linked-List Queues� 148
Array Queues� 148
Specialized Queues� 151

Priority Queues� 151
Deques� 152

Binomial Heaps� 152
Binomial Trees� 152
Binomial Heaps� 154
Merging Trees� 155
Merging Heaps� 156

Merging Tree Lists� 156
Merging Trees� 158

Enqueue� 161
Dequeue� 162
Runtime� 163

Summary� 163
Exercises� 164

Chapter 6	 Sorting� 167
O(N2) Algorithms� 168

Insertionsort in Arrays� 168
Selectionsort in Arrays� 170
Bubblesort� 171

O(N log N) Algorithms� 174
Heapsort� 175

Storing Complete Binary Trees� 175
Defining Heaps� 176
Implementing Heapsort� 180

Quicksort� 181
Analyzing Quicksort’s Run Time� 182
Picking a Dividing Item� 184
Implementing Quicksort with Stacks� 185
Implementing Quicksort in Place� 185
Using Quicksort� 188

Mergesort� 189
Sub O(N log N) Algorithms� 192

Countingsort� 192
Pigeonhole Sort� 193
Bucketsort� 195

Summary� 197
Exercises� 198

	 Contents	 xxi

Chapter 7	 Searching� 201
Linear Search� 202
Binary Search� 203
Interpolation Search� 204
Majority Voting� 205
Summary� 207
Exercises� 208

Chapter 8	 Hash Tables� 209
Hash Table Fundamentals� 210
Chaining� 211
Open Addressing� 213

Removing Items� 214
Linear Probing� 215
Quadratic Probing� 217
Pseudorandom Probing� 219
Double Hashing� 219
Ordered Hashing� 219

Summary� 222
Exercises� 222

Chapter 9	 Recursion� 227
Basic Algorithms� 228

Factorial� 228
Fibonacci Numbers� 230
Rod-Cutting� 232

Brute Force� 233
Recursion� 233

Tower of Hanoi� 235
Graphical Algorithms� 238

Koch Curves� 239
Hilbert Curve� 241
Sierpiński Curve� 243
Gaskets� 246
The Skyline Problem� 247

Lists� 248
Divide and Conquer� 249

Backtracking Algorithms� 252
Eight Queens Problem� 254
Knight’s Tour� 257

Selections and Permutations� 260
Selections with Loops� 261
Selections with Duplicates� 262
Selections Without Duplicates� 264
Permutations with Duplicates� 265
Permutations Without Duplicates� 266
Round-Robin Scheduling� 267

Odd Number of Teams� 268

xxii	 Contents

Even Number of Teams� 270
Implementation� 271

Recursion Removal� 273
Tail Recursion Removal� 274
Dynamic Programming� 275
Bottom-Up Programming� 277
General Recursion Removal� 277

Summary� 280
Exercises� 281

Chapter 10	 Trees� 285
Tree Terminology� 285
Binary Tree Properties� 289
Tree Representations� 292

Building Trees in General� 292
Building Complete Trees� 295

Tree Traversal� 296
Preorder Traversal� 297
Inorder Traversal� 299
Postorder Traversal� 300
Breadth-First Traversal� 301
Traversal Uses� 302
Traversal Run Times� 303

Sorted Trees� 303
Adding Nodes� 303
Finding Nodes� 306
Deleting Nodes� 306

Lowest Common Ancestors� 309
Sorted Trees� 309
Parent Pointers� 310
Parents and Depths� 311
General Trees� 312
Euler Tours� 314
All Pairs� 316

Threaded Trees� 317
Building Threaded Trees� 318
Using Threaded Trees� 320

Specialized Tree Algorithms� 322
The Animal Game� 322
Expression Evaluation� 324

Interval Trees� 326
Building the Tree� 328
Intersecting with Points� 329
Intersecting with Intervals� 330
Quadtrees� 332

Adding Items� 335
Finding Items� 336

	 Contents	 xxiii

Tries� 337
Adding Items� 339
Finding Items� 341

Summary� 342
Exercises� 342

Chapter 11	 Balanced Trees� 349
AVL Trees� 350

Adding Values� 350
Deleting Values� 353

2-3 Trees� 354
Adding Values� 355
Deleting Values� 356

B-Trees� 359
Adding Values� 360
Deleting Values� 361

Balanced Tree Variations� 362
Top-down B-trees� 363
B+trees� 363

Summary� 365
Exercises� 365

Chapter 12	 Decision Trees� 367
Searching Game Trees� 368

Minimax� 369
Initial Moves and Responses� 373
Game Tree Heuristics� 374

Searching General Decision Trees� 375
Optimization Problems� 376
Exhaustive Search� 377
Branch and Bound� 379
Decision Tree Heuristics� 381

Random Search� 381
Improving Paths� 382
Simulated Annealing� 384
Hill Climbing� 385
Sorted Hill Climbing� 386

Other Decision Tree Problems� 387
Generalized Partition Problem� 387
Subset Sum� 388
Bin Packing� 388
Cutting Stock� 389
Knapsack� 390
Traveling Salesman Problem� 391
Satisfiability� 391

Swarm Intelligence� 392
Ant Colony Optimization� 393

xxiv	 Contents

General Optimization� 393
Traveling Salesman� 393

Bees Algorithm� 394
Swarm Simulation� 394

Boids� 395
Pseudoclassical Mechanics� 396
Goals and Obstacles� 397

Summary� 397
Exercises� 398

Chapter 13	 Basic Network Algorithms� 403
Network Terminology� 403
Network Representations� 407
Traversals� 409

Depth-First Traversal� 410
Breadth-First Traversal� 412
Connectivity Testing� 413
Spanning Trees� 416
Minimal Spanning Trees� 417
Euclidean Minimum Spanning Trees� 418
Building Mazes� 419

Strongly Connected Components� 420
Kosaraju’s Algorithm� 421
Algorithm Discussion� 422

Finding Paths� 425
Finding Any Path� 425
Label-Setting Shortest Paths� 426
Label-Correcting Shortest Paths� 430
All-Pairs Shortest Paths� 431

Transitivity� 436
Transitive Closure� 437
Transitive Reduction� 438

Acyclic Networks� 439
General Networks� 440

Shortest Path Modifcations� 441
Shape Points� 441
Early Stopping� 442
Bidirectional Search� 442
Best-First Search� 442
Turn Penalties and Prohibitions� 443

Geometric Calculations� 443
Expanded Node Networks� 444
Interchange Networks� 445

Summary� 447
Exercises� 447

	 Contents	 xxv

Chapter 14	 More Network Algorithms� 451
Topological Sorting� 451
Cycle Detection� 455
Map Coloring� 456

Two-Coloring� 456
Three-Coloring� 458
Four-Coloring� 459
Five-Coloring� 459
Other Map-Coloring Algorithms� 462

Maximal Flow� 464
Work Assignment� 467
Minimal Flow Cut� 468

Network Cloning� 470
Dictionaries� 471
Clone References� 472

Cliques� 473
Brute Force� 474
Bron–Kerbosch� 475

Sets R, P, and X� 475
Recursive Calls� 476
Pseudocode� 476
Example� 477
Variations� 480

Finding Triangles� 480
Brute Force� 481
Checking Local Links� 481
Chiba and Nishizeki� 482

Community Detection� 483
Maximal Cliques� 483
Girvan–Newman� 483
Clique Percolation� 485

Eulerian Paths and Cycles� 485
Brute Force� 486
Fleury’s Algorithm� 486
Hierholzer’s Algorithm� 487

Summary� 488
Exercises� 489

Chapter 15	 String Algorithms� 493
Matching Parentheses� 494

Evaluating Arithmetic Expressions� 495
Building Parse Trees� 496

Pattern Matching� 497
DFAs� 497
Building DFAs for Regular Expressions� 500
NFAs� 502

xxvi	 Contents

String Searching� 504
Calculating Edit Distance� 508
Phonetic Algorithms� 511

Soundex� 511
Metaphone� 513

Summary� 514
Exercises� 515

Chapter 16	 Cryptography� 519
Terminology� 520
Transposition Ciphers� 521

Row/Column Transposition� 521
Column Transposition� 523
Route Ciphers� 525

Substitution Ciphers� 526
Caesar Substitution� 526
Vigenère Cipher� 527
Simple Substitution� 529
One-Time Pads� 530

Block Ciphers� 531
Substitution-Permutation Networks� 531
Feistel Ciphers� 533

Public-Key Encryption and RSA� 534
Euler’s Totient Function� 535
Multiplicative Inverses� 536
An RSA Example� 536
Practical Considerations� 537

Other Uses for Cryptography� 538
Summary� 539
Exercises� 540

Chapter 17	 Complexity Theory� 543
Notation� 544
Complexity Classes� 545
Reductions� 548

3SAT� 549
Bipartite Matching� 550

NP-Hardness� 550
Detection, Reporting, and Optimization Problems� 551

Detection ≤p Reporting� 552
Reporting ≤p Optimization� 552
Reporting ≤p Detection� 552
Optimization ≤p Reporting� 553
Approximate Optimization� 553

NP-Complete Problems� 554
Summary� 557
Exercises� 558

	 Contents	 xxvii

Chapter 18	 Distributed Algorithms� 561
Types of Parallelism� 562

Systolic Arrays� 562
Distributed Computing� 565
Multi-CPU Processing� 567
Race Conditions� 567
Deadlock� 571
Quantum Computing� 572

Distributed Algorithms� 573
Debugging Distributed Algorithms� 573
Embarrassingly Parallel Algorithms� 574
Mergesort� 576
Dining Philosophers� 577

Randomization� 578
Resource Hierarchy� 578
Waiter� 579
Chandy/Misra� 579

The Two Generals Problem� 580
Byzantine Generals� 581
Consensus� 584
Leader Election� 587
Snapshot� 588
Clock Synchronization� 589

Summary� 591
Exercises� 591

Chapter 19	 Interview Puzzles� 595
Asking Interview Puzzle Questions� 597
Answering Interview Puzzle Questions� 598
Summary� 602
Exercises� 604

Appendix A	 Summary of Algorithmic Concepts� 607
Chapter 1: Algorithm Basics� 607
Chapter 2: Numeric Algorithms� 608
Chapter 3: Linked Lists� 609
Chapter 4: Arrays� 610
Chapter 5: Stacks and Queues� 610
Chapter 6: Sorting� 610
Chapter 7: Searching� 611
Chapter 8: Hash Tables� 612
Chapter 9: Recursion� 612
Chapter 10: Trees� 614
Chapter 11: Balanced Trees� 615
Chapter 12: Decision Trees� 615
Chapter 13: Basic Network Algorithms� 616
Chapter 14: More Network Algorithms� 617
Chapter 15: String Algorithms� 618

xxviii	 Contents

Chapter 16: Cryptography� 618
Chapter 17: Complexity Theory� 619
Chapter 18: Distributed Algorithms� 620
Chapter 19: Interview Puzzles� 621

Appendix B	 Solutions to Exercises� 623
Chapter 1: Algorithm Basics� 623
Chapter 2: Numerical Algorithms� 626
Chapter 3: Linked Lists� 633
Chapter 4: Arrays� 638
Chapter 5: Stacks and Queues� 648
Chapter 6: Sorting� 650
Chapter 7: Searching� 653
Chapter 8: Hash Tables� 655
Chapter 9: Recursion� 658
Chapter 10: Trees� 663
Chapter 11: Balanced Trees� 670
Chapter 12: Decision Trees� 675
Chapter 13: Basic Network Algorithms� 678
Chapter 14: More Network Algorithms� 681
Chapter 15: String Algorithms� 686
Chapter 16: Encryption� 689
Chapter 17: Complexity Theory� 692
Chapter 18: Distributed Algorithms� 697
Chapter 19: Interview Puzzles	� 701

Glossary� 711

Index� 739

xxix

Introduction

Algorithms are the recipes that make efficient programming possible. They
explain how to sort records, search for items, calculate numeric values such as
prime factors, find the shortest path between two points in a street network, and
determine the maximum flow of information possible through a communica-
tions network. The difference between using a good algorithm and a bad one
can mean the difference between solving a problem in seconds, hours, or never.

Studying algorithms lets you build a useful toolkit of methods for solving
specifc problems. It lets you understand which algorithms are most effective
under different circumstances so that you can pick the one best suited for a
particular program. An algorithm that provides excellent performance with
one set of data may perform terribly with other data, so it is important that
you know how to pick the algorithm that is the best match for your scenario.

Even more important, by studying algorithms, you can learn general problem-
solving techniques that you can apply to other problems—even if none of the
algorithms you already know is a perfect ft for your current situation. These
techniques let you look at new problems in different ways so that you can create
and analyze your own algorithms to solve your problems and meet unantici-
pated needs.

In addition to helping you solve problems while on the job, these techniques
may even help you land the job where you can use them! Many large tech-
nology companies, such as Microsoft, Google, Yahoo!, IBM, and others, want
their programmers to understand algorithms and the related problem-solving
techniques. Some of these companies are notorious for making job applicants
work through algorithmic programming and logic puzzles during interviews.

xxx	 Introduction

The better interviewers don’t necessarily expect you to solve every puzzle.
In fact, they will probably learn more about you when you don’t solve a
puzzle. Rather than wanting to know the answer, the best interviewers want to
see how you approach an unfamiliar problem. They want to see whether you
throw up your hands and say the problem is unreasonable in a job interview. Or
perhaps you analyze the problem and come up with a promising line of reason
ing for using algorithmic approaches to attack the problem. “Gosh, I don’t know.
Maybe I’d search the Internet,” would be a bad answer. “It seems like a recursive
divide-and-conquer approach might work” would be a much better answer.

This book is an easy-to-read introduction to computer algorithms. It describes
a number of important classical algorithms and tells when each is appropriate.
It explains how to analyze algorithms to understand their behavior. Most
importantly, it teaches techniques that you can use to create new algorithms
on your own.

Here are some of the useful algorithms that this book describes:

■■ Numerical algorithms, such as randomization, factoring, working with
prime numbers, and numeric integration

■■ Methods for manipulating common data structures, such as arrays, linked
lists, trees, and networks

■■ Using more-advanced data structures, such as heaps, trees, balanced trees,
and B-trees

■■ Sorting and searching

■■ Network algorithms, such as shortest path, spanning tree, topological
sorting, and fow calculations

Here are some of the general problem-solving techniques this book explains:

■■ Brute-force or exhaustive search

■■ Divide and conquer

■■ Backtracking

■■ Recursion

■■ Branch and bound

■■ Greedy algorithms and hill climbing

■■ Least-cost algorithms

■■ Constricting bounds

■■ Heuristics

To help you master the algorithms, this book provides exercises that you can
use to explore ways that you can modify the algorithms to apply them to new
situations. This also helps solidify the main techniques demonstrated by the
algorithms.

	 Introduction	 xxxi

Finally, this book includes some tips for approaching algorithmic questions
that you might encounter in a job interview. Algorithmic techniques let you
solve many interview puzzles. Even if you can’t use algorithmic techniques
to solve every puzzle, you will at least demonstrate that you are familiar with
approaches that you can use to solve other problems.

Why You Should Study Algorithms

There are several reasons why you should study algorithms. First, they provide
useful tools that you can use to solve particular problems such as sorting or
fnding shortest paths. Even if your programming language includes tools to
perform tasks that are handled by an algorithm, it’s useful to learn how those
tools work. For example, understanding how array and list sorting algorithms
work may help you decide which of those data structures would work best in
your programs.

Algorithms also teach you methods that you may be able to apply to other
problems that have a similar structure. They give you a collection of techniques
that you can apply to other problems. Techniques such as recursion, divide and
conquer, Monte Carlo simulation, linked data structures, network traversal,
and others apply to a wide variety of problems.

Perhaps most importantly, algorithms are like a workout for your brain. Just
as weight training can help a football or baseball player build muscle, studying
algorithms can build your problem-solving abilities. A professional athlete prob-
ably won’t need to bench press weights during a game. Similarly, you probably
won’t need to implement a simple sorting algorithm in your project. In both
cases, however, practice can help improve your game, whether it’s baseball or
programming.

Finally, algorithms can be interesting, satisfying, and sometimes surprising.
It never ceases to amaze me when I dump a pile of data into a program and a
realistic three-dimensional rendering pops out. Even after decades of study, I
still feel the thrill of victory when a particularly complicated algorithm pro-
duces the correct result. When all of the pieces ft together perfectly to solve
an especially challenging problem, it feels like something at least is right in
the world.

Algorithm Selection

Each of the algorithms in this book was included for one or more of the fol-
lowing reasons:

■■ The algorithm is useful, and a seasoned programmer should be expected
to understand how it works and how to use it correctly in programs.

xxxii	 Introduction

■■ The algorithm demonstrates important algorithmic programming tech-
niques that you can apply to other problems.

■■ The algorithm is commonly studied by computer science students, so the
algorithm or the techniques it uses could appear in a technical
interview.

After reading this book and working through the exercises, you will have a
good foundation in algorithms and techniques that you can use to solve your
own programming problems.

Who This Book Is For

This book is intended primarily for three kinds of readers: professional program-
mers, programmers preparing for job interviews, and programming students.

Professional programmers will fnd the algorithms and techniques described
in this book useful for solving problems they face on the job. Even when you
encounter a problem that isn’t directly addressed by an algorithm in this book,
reading about these algorithms will give you new perspectives from which to
view problems so that you can fnd new solutions.

Programmers preparing for job interviews can use this book to hone their
algorithmic skills. Your interviews may not include any of the problems described
in this book, but they may contain questions that are similar enough so that you
can use the techniques you learned in this book to solve them. Even if you can’t
solve a problem, if you recognize a structure similar to those used in one of the
algorithms, you can suggest similar strategies and perhaps get partial credit.

For all the reasons explained in the earlier section “Why You Should Study
Algorithms,” all programming students should study algorithms. Many of
the approaches described in this book are simple, elegant, and powerful, but
they’re not all obvious, so you won’t necessarily stumble across them on your
own. Techniques such as recursion, divide and conquer, branch and bound, and
using well-known data structures are essential to anyone who has an interest
in programming.

	 N OT E     Personally, I think algorithms are just plain fun! They’re my equivalent of
crossword puzzles or Sudoku. I love the feeling of successfully assembling a compli-
cated algorithm and watching it work.

They also make great conversation starters at parties. “What do you think about label
setting versus label-correcting, shortest path algorithms?”

	 Introduction	 xxxiii

Getting the Most Out of This Book

You can learn some new algorithms and techniques just by reading this
book, but to really master the methods demonstrated by the algorithms, you
need to work with them. You need to implement them in some programming
language. You also need to experiment, modify the algorithms, and try new
variations on old problems. The book’s exercises and interview questions
can give you ideas for new ways to use the techniques demonstrated by the
algorithms.

To get the greatest beneft from the book, I highly recommend that you
implement as many of the algorithms as possible in your favorite program-
ming language or even in more than one language to see how different lan-
guages affect implementation issues. You should study the exercises and at
least write down outlines for solving them. Ideally, you should implement
them, too. Often there’s a reason why an exercise is included, and you may
not discover it until you take a hard look at the problem. The exercises may
lead you down paths that are very interesting but that are too long to squeeze
into the book.

Finally, look over some of the other interview questions available on the Internet
and fgure out how you would approach them. In many interviews, you won’t
be required to implement a solution, but you should be able to sketch out solu-
tions. And if you have time to implement solutions, you will learn even more.

Understanding algorithms is a hands-on activity. Don’t be afraid to put down
the book, break out a compiler, and write some actual code!

This Book’s Websites

Actually, this book has two websites: Wiley’s version and my version. Both sites
contain the book’s source code.

The Wiley web page for this book is www.wiley.com/go/essentialalgorithms.
You also can go to www.wiley.com and search for the book by title or ISBN. Once
you’ve found the book, click the Downloads tab to obtain all of the source code
for the book. Once you download the code, just decompress it with your favorite
compression tool.

	 N OT E     At the Wiley website, you may find it easiest to search by ISBN. This book’s
ISBN is 978-1-119-57599-3.

xxxiv	 Introduction

The C# programs are named with a Pascal case naming convention. For example,
the program that displays graphical solutions to the Tower of Hanoi puzzle for
Exercise 4 in Chapter 9 is named GraphicalTowerOfHanoi. The corresponding
Python programs are named with underscore casing as in graphical_tower_
of_hanoi.py.

To fnd my web page for this book, go to http://www.CSharpHelper.com/
algorithms2e.html.

How This Book Is Structured

This section describes the book’s contents in detail.

Chapter 1, “Algorithm Basics,” explains concepts you must understand to
analyze algorithms. It discusses the difference between algorithms and data
structures, introduces Big O notation, and describes times when practical
considerations are more important than theoretical runtime calculations.

Chapter 2, “Numerical Algorithms,” explains several algorithms that work
with numbers. These algorithms randomize numbers and arrays, calcu-
late greatest common divisors and least common multiples, perform fast
exponentiation, and determine whether a number is prime. Some of the
algorithms also introduce the important techniques of adaptive quadra-
ture and Monte Carlo simulation.

Chapter 3, “Linked Lists,” explains linked-list data structures. These fexible
structures can be used to store lists that may grow, shrink, and change in
structure over time. The basic concepts are also important for building
other linked data structures, such as trees and networks.

Chapter 4, “Arrays,” explains specialized array algorithms and data struc-
tures, such as triangular and sparse arrays, which can save a program
time and memory.

Chapter 5, “Stacks and Queues,” explains algorithms and data structures
that let a program store and retrieve items in frst-in, frst-out (FIFO) or
last-in, frst-out (LIFO) order. These data structures are useful in other
algorithms and can be used to model real-world scenarios such as checkout
lines at a store.

Chapter 6, “Sorting,” explains sorting algorithms that demonstrate a wide
variety of useful algorithmic techniques. Different sorting algorithms work
best for different kinds of data and have different theoretical run times,
so it’s good to understand an assortment of these algorithms. These are
also some of the few algorithms for which exact theoretical performance
bounds are known, so they are particularly interesting to study.

	 Introduction	 xxxv

Chapter 7, “Searching,” explains algorithms that a program can use to search
sorted lists. These algorithms demonstrate important techniques such as
binary subdivision and interpolation.

Chapter 8, “Hash Tables,” explains hash tables—data structures that use
extra memory to allow a program to locate specifc items very quickly.
They powerfully demonstrate the space-time trade-off that is so impor-
tant in many programs.

Chapter 9, “Recursion,” explains recursive algorithms—those that call
themselves. Some problems are naturally recursive, so these techniques
make solving them easier. Unfortunately, recursion can sometimes lead
to problems, so this chapter also describes how to remove recursion from
an algorithm when necessary.

Chapter 10, “Trees,” explains highly recursive tree data structures, which
are useful for storing, manipulating, and studying hierarchical data. Trees
also have applications in unexpected places, such as evaluating arithmetic
expressions.

Chapter 11, “Balanced Trees,” explains trees that remain balanced as they
grow over time. In general, tree structures can grow very tall and thin,
and that can ruin the performance of tree algorithms. Balanced trees solve
this problem by ensuring that a tree doesn’t grow too tall and skinny.

Chapter 12, “Decision Trees,” explains algorithms that attempt to solve
problems that can be modeled as a series of decisions. These algorithms
are often used on very hard problems, so they often fnd only approximate
solutions rather than the best solution possible. However, they are very
fexible and can be applied to a wide range of problems.

Chapter 13, “Basic Network Algorithms,” explains fundamental network
algorithms such as visiting all the nodes in a network, detecting cycles,
creating spanning trees, and fnding paths through a network.

Chapter 14, “More Network Algorithms,” explains more network algorithms,
such as topological sorting to arrange dependent tasks, graph coloring,
network cloning, and assigning work to employees.

Chapter 15, “String Algorithms,” explains algorithms that manipulate strings.
Some of these algorithms, such as searching for substrings, are built into
tools that most programming languages can use without customized
programming. Others, such as parenthesis matching and fnding string
differences, require some extra work and demonstrate useful techniques.

Chapter 16, “Cryptography,” explains how to encrypt and decrypt information.
It covers the basics of encryption and describes several interesting encryp-
tion techniques, such as Vigenère ciphers, block ciphers, and public key

